
FLEXTOOL IN
PRACTICE

Difference between

• ‘Modelling framework’ FlexTool. Does not contain data.

• ’Model’ or ’Model instance’, e.g. FlexTool Egypt local.

FlexTool framework for building models can be accessed via two
different interfaces:

• Spine Toolbox (in this project). More versatile.

• Flextoolweb interface. Needs a server, will be simpler and more
visual.

Remember, FlexTool is still a research level tool in progress so patience
is needed.

Some basic terminology

Input data

Group Main data types, e.g.

Electricity transmission data
(each node)

Transmission and interconnection
capacities

Generation and storage capacity data
(each node)

Installed capacity, technical data of units,
hydro reservoir capacity

Time-series data
(e.g. 8760 hourly values, each node)

Electricity demand, hydro inflow, wind
and solar profile

Cost data
(annual)

Fuel prices, invest costs and emission rate

Annual system data
(annual)

Capacity margin, emission limit

Model output

Output group Main data types

Flexibility indicators Loss of load, reserve shortages, spillage, VRE
curtailment

Unit dispatch Hourly dispatch of every unit

Transmission between nodes Hourly use of transmission lines

Costs OPEX: fuel costs, other O&M costs, CO2 costs,
penalty costs from inflexibilities
CAPEX: Generation capacity investments,
transmission line investments, storage
investments

Marginal prices Hourly marginal price of electricity

Investments Invested amount, type, and costs for
generation, transmission, and storages

FlexTool has three basic building blocks:

• Nodes (n): Each location and energy vector is described as one or more
nodes, e.g. electricity grid divided to three nodes (west, central, and
east).

• Unit (u):Units can produce, consume and store from a node in a grid, e.g.
power plant produces electricity to the west node of the electricity grid.
Units can also be used to convert energy between grids.

• Connections (u-n / n-n): Connections can exist between units and nodes
or between nodes. E.g. electricity transimissionlines between nodes.

Alternatives are used to give alternative values for the same data items

• Scenarios are built from the alternatives

• To make a scenario: Layer any number of alternatives on top of each
other

Node-unit and alternative-scenario

West

Central

East

Power plant

Heat
(central)

Heat pump

Example of node-unit and alternative-scenario

Irrigation
demand

Village
electricity
demand

Capacity
factor time
series

PV panel

Electrical
battery

Water storage (for
modelling
irrigation
flexibility)

Water source

PV other

Pump

Electricity
connection with
price

Diesel connection
with price

Diesel
pump

Battery size:
50 kW / 200 kWh
or 500 kW / 1000 kWh
or model optimized

Max 165 m3/h
~1500 m3/day

21 kW
or model optimized

500 kW
or model optimized

Population 1000
150…200 kWh/h

800 m3
or model
optimized

300 kW or model optimized

6 kW / 183 m3/h (10 m head)
or model optimized

Template parameter values
given to the model

Model objects:

Node

Unit

Node with storage

Connection

1,5 liters /
183 m3/h

Alternatives include:
• Small battery
• Large battery
• Invest battery
• Irrigation

Scenarios include:
• Small battery without

irrigation or investments

• Large battery with irrigation

• Invested battery capacity
with irrigation

Egypt local template model

Representing detail in space and technology

• Node-unit stucture
controls level of
detail vs. run time

• Typical use case is
that nodes are used
for both country-
and city-level and
also as storages or
demands

7

In most cases the users want to give additional constraints that the model has to respect

Most important constraints include

• Unit capacity (MW)

• Energy conversion process with efficiency

Typical additional constraints are

• Minimum reserve capacity (MW at each timestep),

• Minimum inertia limit (MWs at each timestep),

• Max ramp up/down rates for units,

• Maximum/minimum invest on certain technology

• Fixed generation of certain unit

Parameters that control the constraints need to reflect reality

• Too loose constraints can give too optimistic (unrealistic) solutions

• Too strict constraints can lead to too limited (unrealistic) solutions

Parameters for constraints

Commodity is a sink or source of energy with price.

Storages are defined to nodes. By default, node maintains energy balance, but adding
storage includes a ’state’ variable. The state is stored energy (MWh), while the
charging/discharging capacity (MW) is defined as a connection or unit. There are built-in
constraints for managing storage state over start/end/gaps in timeline.

Use equality constraint e.g. to fix ratios of multiple inputs/outputs, and greater than
constraint e.g. to fix the operating area of CHP plants.

Create reserves by fixed time series, dynamically or by largest unit failure.

Commodities can have emissions, and emission constraints can be set by creating
groups. Group constaints can be used also for e.g. inertia or non-syncronous capacity.

More model objects

Temporal building blocks:

• Timeline (t):Timesteps are an ordered series of timesteps, e.g. hours in a year.

• Timeblockset: Choose a block(s) from the timeline to be used in a particular model

• Time period: Annual or other period (needed in multi-year modelling)

• Use solve and model (with alternatives) to choose runs

Time settings

• Dispacth run optimizes operation
typically using 8760 h/year

• Invest run optimizes investments
typically using representative periods
e.g. 5 weeks/year (and then runs
dispatch with full year)

1. Multi-year invest sequence
• Using periods

• For pathway analysis

Temporal options: multi-year and rolling

Foresight & realization horizon

Realization
horizon

Foresight horizon

2. Rolling window for dispatch run
• Using roll settings
• Eases computation
• Can create problems for investments

and long-term storages

Temporal options: Nested rolling window

3. Nested rolling window
• Reduce computational

effort with consideration
for investments and long-
term storages

• Solve investments and
seasonal storage with
reduced resolution using
longer timesteps,
representative periods or
sequenced investments

Strengths

• Free, open source, and relatively simple to use

• Flexible time settings, allows for e.g. rolling horizon, sub-hour resolution and pathway modelling

• Highlights possible operational problems and costs arising from insufficient flexibility

• Capable for investment scenarios to study least cost solutions for the flexibility issues and long-term
capacity expansion planning

• Capable for integrated modelling of storages, sector coupling, unit level constraints, etc

• Support for commercial solvers (CPLEX)

Weaknesses

• Deterministic model; does not have forecast errors *

• Simplified power transmission: transport model (MW constraint only) - or any other energy/material
flow

• At fully open mode open-source solvers (HiGHS) are slower than commercial

* Apart from what is accounted for in the reserves

Strenghts and weaknesses

Spine Toolbox is a Python-based interface to manage data and modelling
workflow and acts as a front-end to FlexTool, but also other models.

Allows maintaining and sharing repeatable workflows to supply data to different
modelling tools. Toolbox includes tools to manage and transform data, data
structures, and data formats.

Toolbox improves the quality and repeatability of the entire modelling process, by
offering a structural approach to:

• Several data sources and their updates

• Data transformations between data, model and results

• Up to hundreds of scerarios

• Sharing, documenting and explaining work to others

Finally: Spine Toolbox for managing workflows

Creating scenarios from alternatives (and parallelizing their execution) is a
Toolbox functionality applied in FlexTool.

FlexTool utilizes the Toolbox data structure

ValueEntity

Entity class
Attribute /

Parameter

Alternatives

Format can be

constant, time series,

time pattern or

expression

Coal plant B7

Availability

95 %

Unit

Rusty plants: 85 %West

Node
The FlexTool unit-node

stucture is one use case of

the generic data structure of

Toolbox.

In Toolbox, the user can

freely define the entity

classes and parameters the

model uses.

Unit__outputNode

Coal plant B7 __ West

