

Examples of regional scope:

- Example 1: TradeRES Backbone European level model
- Example 2: IRENA FlexTool 2.0 Panama national level model
- Example 3: Backbone city level model Finland

Examples of different purposes of modelling:

- Example 4: Backbone North European model for competitiveness of technologies
- Example 5: Interannual variability effects with eference system models
- Example 6: Flexibility comparison

Examples of different selection of detail:

- Example 7: Thermal power plants in detail
- Example 8: Case Ireland with detailed power plants and reserves
- Example 9: Case Baltic countries multi-year modelling





## TRADERES BACKBONE EUROPEAN LEVEL MODEL



### 

# Analysing prices in future energy systems

N. Helistö, J. Kiviluoma and H. Holttinen, "Sensitivity of electricity prices in energy-only markets with large amounts of zero marginal cost generation," 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 2017, pp. 1-6, doi: 10.1109/EEM.2017.7981893.



**Price Duration Curves** 



140 120 % 60 40 20 AT BE BK BT CH CZ DE DK ES FI FR GB IE IT NL PL PT SE NO

**Electricity Generation Share by Type** 



IEEE's European Energy Markets Conference 2023 Lappenranta, 08.06.2023 Silke Johanndeiter





## IRENA FLEXTOOL 2.0 CASE EXAMPLE

Panama power system flexibility assessment



## Flexibility analysis for the power system of Panama



• Panama expects total energy demand to more than double between 2017 and 2030, with peak demand growing from 1.6 GW to 3.5 GW



- » High reliance on hydropower
- » Low energy storage capacity
- » Weak interconnection

#### Analysis undertaken

- » Simulation of different VRE penetration scenarios according to national plans
- Assessment of the optimal generation capacity mix (including storage)
- » Consideration of VRE share increase in long-term planning (mostly solar PV)

- Two scenarios for 2030:
  - Reference scenario: additional 2 GW of natural gas-fired generation
  - Renewables scenario: wind capacity increases from 270 MW to 1 156 MW, and solar PV capacity increases from 131 MW to 782 MW

## **Comparison between scenarios**

LEAP-RE

- The renewables scenario has 5% lower annual costs and 20% lower carbon dioxide emissions.
- No flexibility issues were identified in either scenario

Figure 4: Power generation (annual share) and hourly dispatch over a week in 2030 with the highest VRE penetration: Reference and renewables scenarios



**Table 2:** Main flexibility indicators in Panama's power system in 2030 reference and renewables scenarios: No flexibility issues identified

|                     | 2030 Re     | eference  | 2030 Renewables |           |  |  |  |
|---------------------|-------------|-----------|-----------------|-----------|--|--|--|
|                     | Total (GWh) | Peak (MW) | Total (GWh)     | Peak (MW) |  |  |  |
| Curtailment         | 0           | 0         | 0               | 0         |  |  |  |
| Loss of load        | 0           | 0         | 0               | 0         |  |  |  |
| Spillage            | 0           | 0         | 0               | 0         |  |  |  |
| Reserves inadequacy | 0           | 0         | 0               | 0         |  |  |  |

Note: These flexibility indicators are defined in IRENA (2018b).



## **Additional VRE investments**

- Panama's power system would have enough flexibility to handle even higher penetration of VRE.
- Additional investment run: In the 2030 renewables scenario, cost-efficient to invest in 1.7 GW of additional solar PV capacity and 164 MW of battery storage. §
- Curtailment becomes an issue when both solar PV and wind capacity reach 2 GW. By then VRE curtailment is around 3%, and further flexibility solutions are needed









## CITY LEVEL MODEL FINLAND

**LEAP-RE** 



HELSINKI ENERGY CHALLENGE Award winner BEYOND FOSSILS







## BACKBONE NORTH EUROPEAN MODEL

## Modelling Northern European energy system

Enables studying the competitiveness of different technologies in different future settings

- Includes countries in the map and years 2025, 2030, and 2040
- Electricity, district heat, and hydrogen
- Studying the impacts of modelled technologies and estimated when these technologies would become competitive





## **Backbone North European model**





Built with Backbone open source modelling framework

## Running the model requires three components

- Coding language and solver commercial (<u>https://www.gams.com/latest/docs/UG\_MAIN.html</u>)
- Backbone model framework free (<u>https://gitlab.vtt.fi/backbone/backbone/-/wikis/home</u>)
- Northern European data set free (https://gitlab.vtt.fi/backbone/models/europe-input)



Input data mostly obtained from ENTSO-E

**Open-access** data

Conversion of data to model format using Python and Julia



## Studying new energy technologies





### Can model technologies related to

- Electricity
- District heat
- Hydrogen
- Or any combination

Can model technologies in different locations:

- Countries in the map (multiple areas in SE, NO, and DK)
- A number of towns in Finland (see map)



ENTSO-E TYNDP 2020, with updated values (e.g. VRES, CHP)

Strong additions to especially onshore wind and some to PV

Some decrease of CHP capacity in Finland







## REFERENCE SYSTEM MODELS

Seasonal variability of renewables





## **Seasonal variability of renewables**

Project highlights and outcomes

Japan G7

### Climate can be classified into similar groups



### Seasonal patterns emerge from the interaction of demand and renewables supply





Challenges to integrate renewables in high-VRE systems increase with strong mismatches between energy demand and renewables supply on a seasonal scale.

- Parameters derived from the APS 2040 scenario
  - Technology costs and performances
  - Prices
  - Capacity mixes for thermal (coal, natural gas, oil, biomass and nuclear) and hydro power
  - Share of battery electric vehicles in transport fleet
- The model optimises investments in wind, solar PV and flexibility resources to minimise overall system costs under USD 120/tCO2 carbon price.
- The optimisation is carried out separately for each example system.
- Results are normalised to 1 million persons to facilitate easy comparison across different systems.

#### Technology options considered in all models:

- Solar PV and wind (onshore & offshore) units
- Fossil, nuclear and biomass units,
- Reservoir hydro
- VRE curtailment
- Battery energy storages
- Pumped hydro storages
- EV flexible charging
- H2 storages, including industrial DSM
- Fuel cells
- H2 co-firing in NGCC units
- Ammonia storages
- Ammonia co-firing with coal
- 100% ammonia combined cycle units

| Example system             | Modelled<br>weather<br>years | Hydro<br>inflow<br>(TWh) | Wind<br>onshore<br>(capacity<br>factor) | Wind<br>offshore<br>(capacity<br>factor) | Solar PV<br>(capacity<br>factor) |
|----------------------------|------------------------------|--------------------------|-----------------------------------------|------------------------------------------|----------------------------------|
| Tropical                   | 2015-2021                    | 1.1                      | 0.34                                    | 0.37                                     | 0.16                             |
| Arid                       | 2010-2021                    | 0.40                     | 0.45                                    | 0.62                                     | 0.20                             |
| Temperate with dry season  | 2006-2016                    | 0.86                     | 0.39                                    | 0.50                                     | 0.22                             |
| Temperate with hot summers | 2005-2021                    | 0.88                     | 0.36                                    | 0.56                                     | 0.15                             |
| Continental                | 2006-2017                    | 1.1                      | 0.40                                    | 0.53                                     | 0.12                             |

| Example system             | Coal<br>MW/mp | NGCC<br>MW/mp | Oil<br>MW/mp | Nuclear<br>MW/mp | Bioenergy<br>MW/mp | Hydro<br>MW/mp |
|----------------------------|---------------|---------------|--------------|------------------|--------------------|----------------|
| Tropical                   | 371           | 331           | 102          | 10               | 41                 | 445            |
| Arid                       | 144           | 825           | 160          | 33               | 8                  | 130            |
| Temperate with dry season  | 526           | 322           | 30           | 63               | 23                 | 336            |
| Temperate with hot summers | 465           | 301           | 17           | 117              | 41                 | 358            |
| Continental                | 256           | 500           | 11           | 142              | 25                 | 442            |

| Technology       | Investment<br>cost |                   | Fixed O&M  | Efficiency | Variable<br>O&M   | Additional<br>Info                                |
|------------------|--------------------|-------------------|------------|------------|-------------------|---------------------------------------------------|
|                  | USD /<br>kW_elec   | USD /<br>kWh_elec | % of capex | %          | USD /<br>MWh_elec |                                                   |
| Bio              | 2560               | -                 | 3%         | 36%        | 3.9               |                                                   |
| Coal             | 2000               | -                 | 3%         | 46%        | 2.8               | NH₃ co-firing with<br>coal, up to 60%<br>(energy) |
| Diesel           | 600                | -                 | 5%         | 35%        | 6.0               |                                                   |
| NGCC             | 1000               | -                 | 3%         | 55%        | 1.7               | H₂ co-firing with<br>NG, up to 50%<br>(energy)    |
| Gas engine       | 600                | -                 | 5%         | 35%        | 2.7               |                                                   |
| Nuclear          | 5760               | -                 | 3%         | 33%        | 9.0               |                                                   |
| PV               | 400                | -                 | 2%         | 100%       | 0.1               |                                                   |
| Wind, onshore    | 1000               | -                 | 2%         | 100%       | 2.7               |                                                   |
| Wind, offshore   | 1600               | -                 | 2%         | 100%       | 1.4               |                                                   |
| Batteries        | -                  | 145               | 2%         | 86%        | 3.6               |                                                   |
| PHS              | 1000               | 100               | 3%         | 76%        | 1.0               |                                                   |
| PEM electrolyser | 485                | -                 | 3%         | 71%        | 1.5               |                                                   |
| Fuel cell        | 60                 | -                 | 4%         | 54%        | 2.0               |                                                   |
| CCGT Ammonia     | 1300               | -                 | 3%         | 44%        | 1.7               | 100% NH₃                                          |

lea

### Fuel prices

|             |                                                 | Biomass | Coal  | Natural gas | Oil   |
|-------------|-------------------------------------------------|---------|-------|-------------|-------|
| All regions | Price (USD/MWh)                                 | 22      | 22    | 37          | 50    |
| All regions | CO <sub>2</sub> content (tCO <sub>2</sub> /MWh) | 0       | 0.340 | 0.200       | 0.265 |

### Hydrogen

| Technology | Investment<br>cost |                 | Fixed O&M  | Efficiency | Variable O&M | Add. Info |
|------------|--------------------|-----------------|------------|------------|--------------|-----------|
|            | USD /<br>kW_H₂     | USD /<br>kWh_H₂ | % of capex | %          | USD / MWh_H₂ |           |
| H₂ storage | 100                | 1               | 4%         | 95%        | 0            |           |

Constant industrial hydrogen demand

### Ammonia

| Technology                          | Investment<br>cost<br>USD / | USD /   | Fixed O&M<br>% of capex | Efficiency<br>% | Variable O&M | Additional<br>Info                                                           |
|-------------------------------------|-----------------------------|---------|-------------------------|-----------------|--------------|------------------------------------------------------------------------------|
| Haberbosch + air<br>separation unit | KW_NH₃<br>750               | KWN_NH₃ | 2%                      | 74%             | 0            | Efficiency<br>calculated<br>from H <sub>2</sub> and<br>electricity<br>inputs |
| NH₃ storage                         | 10                          | 0.1     | -                       | 100%            | 0            |                                                                              |

|                       | Parameter                                  |                             |
|-----------------------|--------------------------------------------|-----------------------------|
| Investments           | Interest rate for wind and solar           | 5%                          |
|                       | Interest rate for all other investments    | 8%                          |
|                       | Economic lifetime (years)                  | 20                          |
| Grid parameters       | Maximum hourly VRE share                   | 100%                        |
|                       | Capacity margin                            | 15%                         |
| Other main parameters | CO2 price unless varied in sensitivity run | 120<br>USD/tCO <sub>2</sub> |

## Climate drives seasonal variability of renewables in high-VRE systems

Monthly variation in electricity demand and in generation potential from solar, wind and hydro by example system. Temperate (hot summer) Tropical TWh/mp TWh/mp 0.5 0.5 0 0 10 11 12 2 3 11 12 8 9 10 Month Month Continental (warm summer) Arid (cold) TWh/mp TWh/mp 0.5 0.5 0 0 2 6 8 9 10 11 12 2 10 11 12 3 5 9 Month Month PV/ Wind Hydro — Demand

The seasonal patterns in the generation potential from wind, solar VP and hydro and how they complement patterns in electricity demand are unique to each example systems.

## Thermal plants are the main source of seasonal flexibility



VRE share is 70%-90% of annual generation, but thermal plants cover 55%-75% of seasonal flexibility supply. Carbon intensity range is 30-60 gCO2/kWh, which is relatively low but not compatible with net-zero targets.

### Inter-annual variation is driven by hydro power generation



Solar PV and wind do not demonstrate significant inter-annual variability in any of the studied example systems. Consecutive years of lower-than-average hydro generation can be only managed with thermal plants.

# Thermal plants are needed for managing inter-annual variability but they have low overall availability





Depending on the year, 45%-80% of legacy capacity is dispatched in the Tropical and Arid systems, and 75%-100% in the Temperate and Continental systems. However, the overall utilisation of the fleet is only 5%-22% across all systems.

IEA 2022. All rights reserved.





## FLEXIBILITY COMPARISON



14th Nov. 2012

39



### **Assumptions**

- Nordic countries and Germany
- Fuel prices as in 2010
- CO<sub>2</sub> price 25 €/MWh
- Demand as in 2010
- New power plants from Platts database (until ~2020)
- Nuclear phase-out in Germany + older thermal plants retired
  - Capacity balance rather tight
- 20% energy penetration for wind power scenarios Twenties onshore
- PV not included (focusing on wind integration)
- Transmission from TYNDP 2010 plus Tradewind 2030 scenarios
- Investment costs from EnergiNet report, except transmission from project estimates



### **Scenario assumptions**

|                    | Assumption                                                                                                                                                                        | Estimated cost                  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Transmission       | 2,800 MW additional tranmission between<br>Nordic countries and Germany                                                                                                           | 2000 M€,<br>published TSO plans |
| Flexible Gen.      | 14,665 MW of conventional generation with<br>10 percentage points lower minimum load<br>factor                                                                                    | No estimate                     |
| Electric Boiler    | 3,079 MW of resistance heater capacity split into heat areas                                                                                                                      | 216 M€                          |
| Heat Pump          | 308 MW <sub>elec</sub> of heat pumps (COP 3.5) split<br>into heat areas                                                                                                           | 216 M€                          |
| Heat Storage       | 98,536 MWh (assuming 8 hours for full charging) of heat storage split into heat areas                                                                                             | 89 M€                           |
| Pumped Hydro       | 6,094 MW of pumped hydro replacing 3047<br>MW of reservoir hydro                                                                                                                  | ~2000 M€                        |
| Demand<br>Response | Four price levels of demand response split<br>between regions<br>Block 1: ~80 €/MWh; 900 MW<br>Block 2: ~150 €/MWh; 1,800 MW<br>Block 3: ~200 €/MWh; 1,800 MW<br>Block 4: ~300 WW | No estimate                     |

14th Nov. 2012





#### 14th Nov. 2012



42

## Results — system costs

- Not comparable without investment annuity
- The impact from flexible generation, demand response and pumped hydro is surprisingly small
- Transmission and pumped hydro 4% less cost savings together than separately
- Electric boilers and heat storages
   6% more cost savings together
   than separately
- 12% less cost savings when all scenarios together than if summed separately



## Results — annuity and cost savings

# • Demand response and flexible generation: no investment cost estimate

- But flex gen profits would allow about 10 k€/MW investment
- Transmission (between Germany and Nordic) and heat measures are profitable
- Pumped hydro (in Norway) is not profitable

#### 14th Nov. 2012



43



#### 14th Nov. 2012



## Results — intra-day prices

- Transmission decreases price differences
- Demand response decreases prices
- Electric boilers increase power prices
- Heat storages reduce producer surplus (larger impact in Germany)







## THERMAL POWER PLANTS IN HIGHER DETAIL





Niina Helistö, Juha Kiviluoma, German Morales-España, Ciara O'Dwyer (2021); Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar. Applied Energy, Vol. 290, 116712.

### Energy conversion units in high level of detail





Niina Helistö, Juha Kiviluoma, German Morales-España, Ciara O'Dwyer (2021); Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar. Applied Energy, Vol. 290, 116712.

#### **Steam CHP plant Backbone diagram**

#### $P_4$ $P_9$ HPT $P_2$ \/ $\mathbf{5} P_{\mathbf{5}}$ 1 G В $P_8$ $3P_3$ $P_1$ V $P_7$ $P_{11}$ $P_6$ 11 Ε LPT P<sub>10</sub> 10

## VTT

Components/units: B: boiler/steam generator C: condenser E: heat exchanger G: generator HPT: high-pressure turbine LPT: low-pressure turbine V: valve

Grids/nodes: 1: fuel 2-7: steam 8-9: mechanical energy 10: district heating 11: electricity





## CASE IRELAND WITH MULTIPLE SECTORS



| Temporal representation               | Operational detail         | Continuous full year using<br>at least hourly resolution | Number of representative weeks | Number of high-resolution weeks (other weeks at daily resolution) | Scaled time series in repr. weeks (according to annual capacity factors) | Continuous (CO) or cyclic (CY) storage between repr. weeks | Repr. or high-resolution weeks selected<br>using random sampling (RS)<br>or regular decomposition (RD) | Highest resolution (1h, 15min, 5min) | Online variables | FCR requirement | FFR requirement | Ramp limits | Flexible output ratios of CHP units |
|---------------------------------------|----------------------------|----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|-----------------|-----------------|-------------|-------------------------------------|
| unscaled, cyclic storage, 7wks/RD/    | (no oper. details)         | N                                                        | 7                              | -                                                                 | N                                                                        | CY                                                         | RD                                                                                                     | 1h                                   | N                | N               | N               | N           | N                                   |
| unscaled, cyclic storage, 7wks/RS/    | (no oper. details)         | N                                                        | 7                              | -                                                                 | N                                                                        | CY                                                         | RS                                                                                                     | 1h                                   | N                | Ν               | N               | N           | N                                   |
| scaled, cyclic storage, 7wks/RD/      | (no oper. details)         | N                                                        | 7                              | -                                                                 | Y                                                                        | CY                                                         | RD                                                                                                     | 1h                                   | N                | N               | N               | N           | N                                   |
| scaled, cyclic storage, 7wks/RS/      | (no oper. details)         |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | N                | Ν               | N               | N           | N                                   |
|                                       | online                     |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | N               | N               | N           | N                                   |
|                                       | online, FCR                | N                                                        | 7                              | -                                                                 |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | Y               | N               | N           | N                                   |
|                                       | online, FFR                |                                                          |                                |                                                                   | Y                                                                        |                                                            |                                                                                                        | 1h                                   | Y                | N               | Y               | N           | N                                   |
|                                       | online, FCR+FFR            |                                                          |                                |                                                                   |                                                                          | CY                                                         | RS                                                                                                     | 1h                                   | Y                | Y               | Y               | N           | N                                   |
|                                       | online, ramp limits        |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | N               | N               | Y           | N                                   |
|                                       | online, ramp limits, 15min |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 15min                                | Y                | Ν               | N               | Y           | N                                   |
|                                       | online, ramp limits, 5min  |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 5min                                 | Y                | N               | N               | Y           | N                                   |
|                                       | online, CHP flex           |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | N               | N               | N           | Y                                   |
| scaled, continuous storage, 7wks/RS/  | (no oper. details)         | N                                                        | 7                              | -                                                                 | Y                                                                        | CO                                                         | RS                                                                                                     | 1h                                   | N                | N               | N               | N           | N                                   |
|                                       | (no oper. details)         |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | N                | N               | N               | N           | N                                   |
|                                       | online                     |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | N               | N               | N           | N                                   |
|                                       | online, FCR                |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | Y               | N               | N           | Ν                                   |
|                                       | online, FFR                |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | Ν               | Y               | N           | Ν                                   |
| 5wks/RS/+aggr                         | online, FCR+FFR            | N                                                        | -                              | 5                                                                 | -                                                                        | -                                                          | RS                                                                                                     | 1h                                   | Y                | Y               | Y               | N           | N                                   |
|                                       | online, ramp limits        |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | N               | N               | Y           | N                                   |
|                                       | online, ramp limits, 15min |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 15min                                | Y                | N               | N               | Y           | Ν                                   |
|                                       | online, ramp limits, 5min  |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 5min                                 | Y                | N               | N               | Y           | Ν                                   |
|                                       | online, CHP flex           |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | Ν               | N               | N           | Y                                   |
| 7wks/RS/+aggr                         | (no oper. details)         | N                                                        | -                              | 7                                                                 | -                                                                        | _                                                          | RS                                                                                                     | 1h                                   | Ν                | N               | N               | N           | N                                   |
| cyclic storage, 52wks                 | (no oper. details)         | N                                                        | 52                             | -                                                                 | -                                                                        | CY                                                         | _                                                                                                      | 1h                                   | N                | Ν               | N               | N           | N                                   |
| · · · · · · · · · · · · · · · · · · · | (no oper. details)         |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | N                | N               | N               | N           | N                                   |
|                                       | online                     |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | N               | N               | N           | N                                   |
|                                       | online, FCR                | ]                                                        |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | Y               | N               | N           | N                                   |
| full year                             | online, FFR                | v                                                        |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | N               | Y               | N           | N                                   |
| iuii yeai                             | online, FCR+FFR            | T                                                        | _                              | -                                                                 |                                                                          | _                                                          | -                                                                                                      | 1h                                   | Y                | Y               | Y               | N           | N                                   |
|                                       | online, ramp limits        |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | Ν               | N               | Y           | N                                   |
|                                       | online, ramp limits, 15min |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 15min                                | Y                | N               | N               | Y           | N                                   |
|                                       | online, CHP flex           |                                                          |                                |                                                                   |                                                                          |                                                            |                                                                                                        | 1h                                   | Y                | N               | N               | N           | Y                                   |

### 

### MODELLING RESERVES

### Testing the impact of model detail on the results

Niina Helistö, Juha Kiviluoma, German Morales-España, Ciara O'Dwyer (2021); Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar. Applied Energy, Vol. 290, 116712.





BALTIC MULTI-YEAR MODELLING

# Changes in the Baltic energy system towards 2030–40

As share of renewables becomes dominant in the Nordic countries, electricity market prices detach from fossil and emission prices. This leads to frequent low electricity prices from Sweden and Finland.

Substantial expansion of domestic wind and solar generation increases generation variability and flexibility demand.

**3** Renewable energy share in Central Europe and Poland remains lower and dependency on fossil fuel persist. This leads to regularly higher electricity prices in Poland than the Nordics.



Personal transport and building heating electrify, leading to increased electricity demand, but improved energy efficiency. End-use sectors become increasinbly available for demand response.

Increased natural gas prices and reduced availability encourage fossil phaseout and domestic renewable investments, but can challenge energy security and energy affordability.

5

6

Changes in transfer connections (detachment from Russian syncronous grid and reinforcement of transmission lines to Poland and inside the Baltic region) **increase integration with Europe, but reduce overall import capacity.** 

The Baltic region will remain highly impacted by the policies of other countries in the Nordic and Central Europe. The Baltic countries may economically benefit from the large planned renewable capacity installations in other countries, but this may contradict with feasibility of own domestic generation and domestic generation goals.

## **Model structure**

#### SECTORS

Electricity, district heat, private road transport and building heating in three countries

#### UNITS

Generation units aggregated to approx. 100 units

RESOLUTION Hourly time series on country level + heating divided between capital/other regions



# Temporal structure: Pathway multi-year investments



- 1. Invest optimization run for entire model horizon
  - 45 technology options
- 2. Individual schedule runs for each model years





### Modelled electricity generation mix 2021-2040

Low prices

High prices

Estonia







Baltic total



Invest optimized results in both scenarios lead to a very high wind share in the Baltic region. Also PV share is considerable.

Large investments in wind power and PV increase domestic generation share and decrease net imports. **High natural gas prices in** '**High prices' scenario may further increase domestic generation and investment in new domestic capacity.** 

'High prices' scenario speeds up and advance the phaseout of natural gas, but delays the phaseout of oilshale.

3

4

Generation by biomass with CCS from 2035 onwards may become feasible, especially in 'Low prices' scenario (see slide 15 for details).

Electrification advances faster in 'High prices' scenario, but demand impact from transport and district heat remain small. The demand of electricity for hydrogen production is highly uncertain.

Note that due to regional optimization approach the model does not distribute wind power investments equally, but favors investments in Estonia and Lithuania. Note also that 2021 was a below average hydrological year, while the modelled hydro years 2025-2040 represents an above average hydrological year (annual variation was not considered).

Statistics on 2021 electricity generation based on IEA data



## Modelled Baltic pathway scenarios with free invest optimization

Summary of available technologies and invest results:



The Baltic pathway invest modelling 2025-2040 compared two main scenarios:

#### 'LOW PRICES' SCENARIO

#### 'HIGH PRICES' SCENARIO

- Natural gas prices lower to 35 €/MWh after 2025
- Other fuel prices remain moderate
- Electricity trade prices from Nordic European modelling based on assumed fuel prices: average prices from Finland
   4-10 €/MWh, from Sweden 39-53
   €/MWh and from Poland 98-105
   €/MWh
- EU ETS allowance price
   80 €/CO₂tonne
- Realistic invest speed of rooftop-PV, energy renevations in buildings and EV expansion
- Biomass growth limitation (1,2 times 2017 level)

- Natural gas prices remain at high level 80 €/MWh after 2025
- Other fuel prices remain **costly**
- Electricity trade prices from Nordic European modelling based on assumed fuel prices: average prices from Finland 5-14 €/MWh, from Sweden 51-73 €/MWh and from Poland 114-125 €/MWh
- EU ETS allowance price 80 €/CO₂tonne
- **Optimistic** invest speed of rooftop-PV, energy renevations in buildings and **realistic** EV expansion
- Biomass growth limitation (1,2 times 2017 level)

See slide 21 for more detailed assumptions and methodology